skip to main content


Search for: All records

Creators/Authors contains: "Calhoun, Vince"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between sub-cortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.

     
    more » « less
  2. Abstract

    In the era of big data, where vast amounts of information are being generated and collected at an unprecedented rate, there is a pressing demand for innovative data-driven multi-modal fusion methods. These methods aim to integrate diverse neuroimaging perspectives to extract meaningful insights and attain a more comprehensive understanding of complex psychiatric disorders. However, analyzing each modality separately may only reveal partial insights or miss out on important correlations between different types of data. This is where data-driven multi-modal fusion techniques come into play. By combining information from multiple modalities in a synergistic manner, these methods enable us to uncover hidden patterns and relationships that would otherwise remain unnoticed. In this paper, we present an extensive overview of data-driven multimodal fusion approaches with or without prior information, with specific emphasis on canonical correlation analysis and independent component analysis. The applications of such fusion methods are wide-ranging and allow us to incorporate multiple factors such as genetics, environment, cognition, and treatment outcomes across various brain disorders. After summarizing the diverse neuropsychiatric magnetic resonance imaging fusion applications, we further discuss the emerging neuroimaging analyzing trends in big data, such as N-way multimodal fusion, deep learning approaches, and clinical translation. Overall, multimodal fusion emerges as an imperative approach providing valuable insights into the underlying neural basis of mental disorders, which can uncover subtle abnormalities or potential biomarkers that may benefit targeted treatments and personalized medical interventions.

     
    more » « less
  3. Abstract

    Deep learning has become an effective tool for classifying biological sex based on functional magnetic resonance imaging (fMRI). However, research on what features within the brain are most relevant to this classification is still lacking. Model interpretability has become a powerful way to understand “black box” deep-learning models, and select features within the input data that are most relevant to the correct classification. However, very little work has been done employing these methods to understand the relationship between the temporal dimension of functional imaging signals and the classification of biological sex. Consequently, less attention has been paid to rectifying problems and limitations associated with feature explanation models, e.g. underspecification and instability. In this work, we first provide a methodology to limit the impact of underspecification on the stability of the measured feature importance. Then, using intrinsic connectivity networks from fMRI data, we provide a deep exploration of sex differences among functional brain networks. We report numerous conclusions, including activity differences in the visual and cognitive domains and major connectivity differences.

     
    more » « less
  4. Abstract

    Electroconvulsive therapy (ECT) is the most effective treatment for severe depression and works by applying an electric current through the brain. The applied current generates an electric field (E-field) and seizure activity, changing the brain’s functional organization. The E-field, which is determined by electrode placement (right unilateral or bitemporal) and pulse amplitude (600, 700, or 800 milliamperes), is associated with the ECT response. However, the neural mechanisms underlying the relationship between E-field, functional brain changes, and clinical outcomes of ECT are not well understood. Here, we investigated the relationships between whole-brain E-field (Ebrain, the 90thpercentile of E-field magnitude in the brain), cerebro-cerebellar functional network connectivity (FNC), and clinical outcomes (cognitive performance and depression severity). A fully automated independent component analysis framework determined the FNC between the cerebro-cerebellar networks. We found a linear relationship between Ebrainand cognitive outcomes. The mediation analysis showed that the cerebellum to middle occipital gyrus (MOG)/posterior cingulate cortex (PCC) FNC mediated the effects of Ebrainon cognitive performance. In addition, there is a mediation effect through the cerebellum to parietal lobule FNC between Ebrainand antidepressant outcomes. The pair-wise t-tests further demonstrated that a larger Ebrainwas associated with increased FNC between cerebellum and MOG and decreased FNC between cerebellum and PCC, which were linked with decreased cognitive performance. This study implies that an optimal E-field balancing the antidepressant and cognitive outcomes should be considered in relation to cerebro-cerebellar functional neuroplasticity.

     
    more » « less
  5. Abstract Background

    Grip strength is a widely used and well-validated measure of overall health that is increasingly understood to index risk for psychiatric illness and neurodegeneration in older adults. However, existing work has not examined how grip strength relates to a comprehensive set of mental health outcomes, which can detect early signs of cognitive decline. Furthermore, whether brain structure mediates associations between grip strength and cognition remains unknown.

    Methods

    Based on cross-sectional and longitudinal data from over 40,000 participants in the UK Biobank, this study investigated the behavioral and neural correlates of handgrip strength using a linear mixed effect model and mediation analysis.

    Results

    In cross-sectional analysis, we found that greater grip strength was associated with better cognitive functioning, higher life satisfaction, greater subjective well-being, and reduced depression and anxiety symptoms while controlling for numerous demographic, anthropometric, and socioeconomic confounders. Further, grip strength of females showed stronger associations with most behavioral outcomes than males. In longitudinal analysis, baseline grip strength was related to cognitive performance at ~9 years follow-up, while the reverse effect was much weaker. Further, baseline neuroticism, health, and financial satisfaction were longitudinally associated with subsequent grip strength. The results revealed widespread associations between stronger grip strength and increased grey matter volume, especially in subcortical regions and temporal cortices. Moreover, grey matter volume of these regions also correlated with better mental health and considerably mediated their relationship with grip strength.

    Conclusions

    Overall, using the largest population-scale neuroimaging dataset currently available, our findings provide the most well-powered characterization of interplay between grip strength, mental health, and brain structure, which may facilitate the discovery of possible interventions to mitigate cognitive decline during aging.

     
    more » « less
  6. Abstract

    Assessing brain connectivity during rest has become a widely used approach to identify changes in functional brain organization during development. Generally, previous works have demonstrated that brain activity shifts from more local to more distributed processing from childhood into adolescence. However, the majority of those works have been based on functional magnetic resonance imaging measures, whereas multispectral functional connectivity, as measured using magnetoencephalography (MEG), has been far less characterized. In our study, we examined spontaneous cortical activity during eyes-closed rest using MEG in 101 typically developing youth (9–15 years old; 51 females, 50 males). Multispectral MEG images were computed, and connectivity was estimated in the canonical delta, theta, alpha, beta, and gamma bands using the imaginary part of the phase coherence, which was computed between 200 brain regions defined by the Schaefer cortical atlas. Delta and alpha connectivity matrices formed more communities as a function of increasing age. Connectivity weights predominantly decreased with age in both frequency bands; delta-band differences largely implicated limbic cortical regions and alpha band differences in attention and cognitive networks. These results are consistent with previous work, indicating the functional organization of the brain becomes more segregated across development, and highlight spectral specificity across different canonical networks.

     
    more » « less
  7. Resting-state functional magnetic resonance imaging (rsfMRI) has become a widely used approach for detecting subtle differences in functional brain fluctuations in various studies of the healthy and disordered brain. Such studies are often based on temporal functional connectivity (i.e., the correlation between time courses derived from regions or networks within the fMRI data). While being successful for a number of tasks, temporal connectivity does not fully leverage the available spatial information. In this research study, we present a new perspective on spatial functional connectivity, which involves learning patterns of spatial coupling among brain networks by utilizing recent advances in deep learning as well as the contrastive learning framework. We show that we can learn domain-specific mappings of brain networks that can, in turn, be used to characterize differences between schizophrenia patients and control. Furthermore, we show that the coupling of intradomain networks in the controls is stronger than in patients suffering from the disorder. We also evaluate the coupling among networks of different domains and find various patterns of stronger or weaker coupling among certain domains, which provide additional insights about the brain. 
    more » « less
  8. Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time , and voxels , revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change. 
    more » « less